Examination Climate and Atmosphere, 19 juni 2013

All problems count the same.

Final mark = 0.9 * mark examination + 1 for active cooperation at practicum City Climate.

Some equations and constants:

S₀ = 1361 Wm⁻²; g = 9.81 ms⁻²; R = 287 J kg⁻¹K⁻¹; c_p = 1005 J/kg; Earth radius = 6.37 10⁶ m; albedo earth = 0.298; p₀ = 1013 hPa; average temperature near the earth surface 288 K; σ = 5.67 10⁻⁸ W m⁻²K⁻⁴. Saturated water vapor pressure $e_s = 611 \exp[17.67 T/(T + 237.3)]$ (*T* in ⁰C)

Equation of motion: $\frac{D\mathbf{u}}{Dt} + \frac{1}{\rho} \nabla p + g\hat{\mathbf{z}} + f\hat{\mathbf{z}} \times \mathbf{u} = F$

Frontal slope by Margules: $\tan \gamma = \frac{2 \rho \Omega \Delta u}{g \Delta \rho}$

Problem 1

- a) Calculate the temperature of the earth surface without atmosphere.
- b) Calculate the temperature of the earth with a thin atmosphere that is fully transparant for solar radiation and fully absorbing for heat radiation.
- c) Calculate the transparancy for heat radiation to get the right temperature near the earth surface of this thin and for solar radiation transparant atmosphere.
 Recommendation: make a sketch of the situation and argue which requirements hold for the terms of the energy balance.

Problem 2

- a) Argue from the Margules equation how baroclinic instability arises.
- b) Explain which type of weather situations arise due to baloclinic instability.

Problem 3

a) Calculate the maximum geostrphic wind around a low pressure system at 45° N and a temperature of 260 K. Air pressure versus distance r to the center of low pressure is given by:

 $p = 1013 - 25 \ e^{-r^2/R^2}$ hPa with R = 600 km.

- b) At which radius is the the highest geostrpic wind velocity?
- c) Is the geostropic assumption valid? Compare the Coriolis acceleration with the centripital acceleration.

Problem 4

- a) Give as many as possible causes why Arctic sea ice cover declined more quickly than expected. Add whether this is an uncertain hypothesis or almost certain.
- b) And how about sea ice around Antarctica?

Problem 5. Given: The atmosphere above the Sahara emits net 20 Wm^{-2} radiation and the vertical temperature gradient is 6.9 ⁰C/km.

- a) Give equations for the dry adiabatic and vertical gradient of pressure.
- b) Derive an equation for energy release when a unit volume air above the Sahara sinks with velocity *w* while keeping the temperature of the surrounding.
- c) Derive the integrated equation between average vertical velocity and energy release.
- d) Calculate the mean vertical velocity (with sign) above the Sahara.